Experimental setup of Solar Air Heater with Rib Modification: A Review

Dr. Mangesh R. Dharme¹, Niraj A. Dakhore², Prof. Kishor R. Gawande³, Prof.S.M.Tondre⁴ Department of Mechanical Engineering^{1,2,3,4}, Dr. Rajendra Gode Institute of Technology & Research, Amravati, India^{1,2,3,4}

Email: mangeshdharme@yahoo.co.in¹, *nirajdakhore01@gmail.com*², *kishorrgawande@gmail.com*³, tondresomdatta@gmail.com⁴

Abstract- Solar Air Heaters are utilized in variety of forms and types. They are cost effective, efficient and their performance is remarkable. It directly utilizes the solar energy to keep air warm and can maintain required temperature. This review focuses on the utilization of solar air heater in different places with their performance efficiency. The various types of solar air heater with ribs are also discussed. Most of the authors have focuses on effectiveness of solar air heater for long term duration. But fluctuation in solar energy is to be considered for studying effectiveness of solar air heater.

This review also focuses on the study which have done with solar air heater capabilities to know the possible fields where it can work successfully. Modification in ribs is done rarely and if we find a performance analysis with modification in ribs then it could be a new edge of study on solar air heater.

Index Terms- Solar Air Heater, Ribs, Solar Energy, Performance Analysis

1. INTRODUCTION

Solar air heaters are being used for many applications at low and moderate temperatures. Some of these are crop drying, timber seasoning, space heating, cooking etc. The thermal efficiency of solar air heater has been found to be low due low thermal capacity of air and because of low convective heat transfer coefficient between absorber plate and flowing air in the duct. The use of solar panel for storing the sun radiation can be the solution for this in our future research work. Attempts has been made to enhance the heat transfer rate by use of extending surface in form of fins but the heat transfer is accompanied by pressure drop penalty. In another approach use of artificial roughness is the most effective and economic way for improving performance of solar air heater. In this approach turbulence is created by roughened surface in viscous sub layer to obtain heat transfer enhancement. Several roughness geometry has been tested so far to enhance heat transfer with consumption of pumping power [1].Energy is the one of the most important need of mankind, be it proving light or be it to run machines. Energy in different forms and functions has portrayed a very important role in the extensive economic boom and industrialization. For coming generations, we need to depend on the source which can provide infinite energy. Solar energy can be said to be one of those forms which is freely available, and easily accessible and of course is non-polluting in nature. It is considered to be an indispensable source of energy to meet the growing demand for the sustainable

development and to control the global climate change. The need to enhance the thermal performance of heat exchangers, consequently, effecting energy, material, and cost savings as well as a consequential mitigation of environmental degradation had led to the development and use of many heat transfer enhancement techniques. There are several devices like solar water heater and solar air heater are used to harness the solar energy. Many researchers have conducted numerical study of solar air heater. CFD is a vital tool to analyze thermal systems [7]. Solar Air Heater is the one the device which converts solar energy into thermal energy. This energy can be utilized in various applications like warming the room, dry heated air for industrial applications, removing moisture content in food industry etc.

2. EXPERIMENTAL SET-UP

Research experimental setup consists of insulated box and collector plate made of solar panel which is placed on the top of the box. On the bottom plate and top plate v-shaped ribs were mounted for better convection of heat. This type of rib mounting is also called as increasing surface roughness.

- Insulated box with collector plate
- Complete assembly along with inlet and outlet pipes

There are different types of solar air heaters are available, but generally they are classified into two groups.

• Smooth Plate Solar Air Heater

International Journal of Research in Advent Technology, Vol.7, No.1, January 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org

Ribbed Plate Solar Air Heater

Smooth plate solar air heaters are usually less thermal effibience do perference rithe of plateis observer. hEater investigate this fact and other performance characteristics experimentations are carried out. Air at inlet is taken by two ways free air stream and air stream by means of blower to obtain free and forced convection. The temperature inside the box is measured by using various thermocouples at different locations. Roughness provided on collector plate gives better thermal efficiency and it also gives better heat transfer rate.

3. LITERATURE REVIEW

Suman Saurav1, M. M. Sahu2, "Heat transfer and thermal efficiency of solar air heater having artificial roughness: a review": In this paper the artificial roughness in the form of ribs is discussed. Authors have given the experimental justification for the roughness which improves the thermal efficiency of solar air heater. It shows that making of specific designed patterns on surface (ribs) the efficiency will improve. Different patterns are considered to prove this. [1]

Naresh Prajapati, Ajay Kumar Singh, Ashish Verma, "Comparison Of Performance of Double Pass Solar Air Heater Having Double Layer Glass": The discussion about the comparison of the thermal performance of double pass solar air heater of different types of absorber plates has been done in this paper. For this purpose, three different types/colors of metallic sheets are used. The absorber plates havemetallic color, black color and black color with mesh wire as auxiliary attachments. Experiment gives the result that the highest heat transfer is found out to be for black colored plate with wire mesh at all the exit wind velocity. Metallic colored plate is able to absorb least heat. Hence the black colored plate is efficient. [2]

Mr C Palaniappan, SUN BEST, Theni, Tamil Nadu, India, "Solar Air Heaters: Large Solar Thermal Air Systems for Industrial and Agro Applications": This article focuses on two existing solar air heater projects which are used in leather auto spray drying supported by a UNIDO project at Kanpur, State Uttar Pradesh, India and one for chilies drying in Kerala, India run by a women self-help group. The results in both cases are much impressive and show the effectiveness of Solar Air Heater in industrial as well as agro-industrial field. The emerging solar air heating technology indicates a potential of 0.92 million m2 collectors and this is equivalent to savings in 3.52

Mtoe y (million tonnes oil equivalent/year) in Indian industries and agro-processing sectors. [3]

M. Sivaganesh, 2Dr. R. Rathnasamy & 3Dr. R. Karthikeyan, "Performance Analysis on Improved Solar Air Heater": In this paper the incorporation of multiple v-ribs along with baffles on one side of absorber is placed to improve the heat transfer coefficient. Article also focuses on the reasons of poor

flow developed due to ribs and baffles improves thermal performance of heater. Experiment conducted under the different flow condition, shows the flow below the absorber gives better performs to increases efficiency by 11.18% at 10m/s and 22.88% at 15m/s compared with smooth side of absorber. [4]

Foued Chabane1,2, Noureddine Moummi1,2, Said Benramache3, Djamel Bensahal1, and Okba Belahssen3, "Collector Efficiency by Single Pass of Solar Air Heaters with and without Using Fins": In this paper single pass air heater with modified solar collector which improves the efficiency is discussed. Ribs are the main components which provide maximum area which comes in contact with air and hence the heat transfer rate is better. Two air mass flow rates of 0.012 and 0.016 kg/s were compared through the experimentation, the maximum efficiency obtained for the 0.012 and 0.016 kg/s with, and without fins were 40.02, 51.50% and 34.92, 43.94% respectively. This result proves the enhancement in the thermal efficiency. [5]

Santosh Vyas1 and Dr. Sunil Punjabi2, "Thermal Performance Testing Of A Flat Plate Solar Air Heater Using Optical Measurement Technique": in this paper experimentation conducted for thermal performance testing of flat plate solar air heater with simulated solar radiation intensity; 600 W/m2 . Plane absorber, transverse V- porous ribs and inclined V-porous ribs of absorber are tested and their thermal efficiencies are found 14.91%, 17.24% and 20.04%. [6]

Sumit Kumarl and Vijay Singh Bisht2, "CFD Analysis of Solar Air Heater Roughened with S-shape Ribs with Gap and S-shape Protrusion Roughness": The CFD tool ANSYS Fluent is used to carry out performance analysis of solar air heater in case of S shaped ribs, multiple broken arc shaped ribs combined with circular protrusion in arc shape on the back side of absorber plate. An improvement in Nusselt Number at high Reynolds number (Above 8000) is obtained. Improvement in Nusselt Number improves the life and it will be more economical. [7]

P. Velmurugan and P. Ramesh, "Evaluation of thermal performance of wire mesh solar air heater": Wire mesh on solar collector is installed to enhance the heat transfer. In this paper matrix solar air heater with wire mesh collector is discussed and its increased efficiency shows the effectiveness. Wire mesh solar air heater always gives better efficiency as compared with flat plate solar air heater. [8]

Rajendra Karwa and V. Srivastava, "Thermal Performance of Solar Air Heater Having Absorber Plate with V-Down Discrete Rib Roughness for Space-Heating Applications": In this paper v-down discrete rib with roughness on the air flow side of the

International Journal of Research in Advent Technology, Vol.7, No.1, January 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org

observer plate is discussed for space heating application.[9]

Abhishek Saxena1 and Varun Goel2, "Solar Air Heaters with Thermal Heat Storages": In this paper the thermal storages are discussed where the rock bed type and phase changing material thermal storage is compared were the phase change material thermal storage found more effective. Few more thermal storages are discussed along with results.[10]

B. K. Maheshwari, Rajendra Karwa, and S. K. Gharai, "Performance Study of Solar Air Heater Having Absorber Plate with Half-Perforated Baffles": A mathematical model of smooth duct solar air heater is compared with experimental setup. Half-perforated baffles are attached with absorber plate on air flow side which improves the thermal efficiency by 28%– 45% over that of the smooth duct solar air heater. Perforated baffles give 180%–235% increment in thermal efficiency. Using the mathematical model, the performance plot for the baffled duct air heater presented, and the effect of the variation of ambient parameters on the predicted thermal efficiency published. [11]

Anamika, Dr. H.C. Thakur, Dr. Gopal Nandan, "A Review on Solar Air Heater Performance Using Different Artificial Roughened Rib": In this review paper various tool of improvement of thermal efficiency is discussed. Ribs, wired type of artificial roughness prevent laminar boundary layer formation and hence the efficiency improves. [12]

Sanda Budea, "Solar Air Collectors for Space Heating and Ventilation Applications-Performance and Case Studies under Romanian Climatic Conditions": The climatic conditions of the Southeastern Europe are considered to show experimental results. It was shown that after a maximum 50 min, solar air collectors, with baffles and double air passage can reach over 50% efficiency for solar irradiation of 900-1000 W/m2. The article also presents a mathematical model and the results of a computational program that allows sizing solar collectors for the transfer of air, with the purpose of improving the natural ventilation of buildings. [13] Amod Kumar a, Rajiv Varshney b, " Experimental study on Heat Transfer Enhancement of a Solar Air Heater with Absorber Plate having Multi V-shaped Rib with Gap and Thermal Storage": Improvement in thermal efficiency is suggested by providing ribs and baffles in this paper. In the present work, a solar air heater has been designed and fabricated with multi Vshaped rib with gap below the absorber plate. A thermal storage system with oil was used which releases heat at the time of low solar radiation. The performance of this modified solar air heater is investigated and compared with that of conventional solar air heater. It is found that 28% efficiency is improved by using thermal storage with oil. [14]

Madhav Durusoju1, Chetan Goyal2, Imran Sheik3, Akash Dongre4, Lalit Marbate5, Kumar Rohit6 and

V.P.Katekar7, "Heat Transfer Enhancement Techniques for Solar Air Heater – A Review": This review paper discussed the types of roughness can be provided on the absorber. Also the performance characteristics along with thermal efficiency testing are reviewed. [15]

Sanket Khamitkar 1*, Dr. O. D. Hebbal 2, "Performance Analysis of Solar Air Heater Using CFD": In this paper, the thermal efficiency of a solar air collector called unglazed transpired collector (UTC) has been studied and validated using CFD. The study was done to calculate efficiency of solar air heater under hot climatic conditions with two different mass flow rates of air. It was found that temperature rise decreases with increasing air mass flow rate and the efficiency increases with increasing air mass flow rate. Increasing the irradiation level seems to have a very limited effect on the collector efficiency for both mass flow rates. Still, the results show a small increase in efficiency as the irradiation intensity decreases for both mass flow rates. [16]

Harish Kumar Patel; 2Saurabh Singh; 3Alfa Tigga; 4Krishna Kumar Darpan, "Thermal Performance of Solar Air Heater by with artificial roughness-A Review": In this review paper also the artificial roughness is discussed to improve the efficiency of the solar air heater. Ribs and baffles of different size and shape gives improvement in thermal efficiency of Solar air heater. Same is discussed and concluded in this paper. [17]

Anand Patel1, Divyesh Patel2, Sadanand Namjoshi3, "Thermal Performance Evaluation of Spiral Solar Air Heater": In this paper spiral solar air heater is discussed in brief and its performance is checked using K type thermocouple. It is one more type of artificial roughness whose efficiency is much better than flat plate Solar Air Heater. [18]

4. OBJECTIVE OF STUDY

- To know previous, recent research done on solar air heater.
- To carry required research approach for the rib modification and its performance analysis of solar air heater.
- Understanding of performance analysis methods for solar air heater.
- Study of types, performance characteristics, practical analysis requirement of solar air heater.
- To study recent developments in Solar Air Heater and their working principles.

5. SCOPE OF STUDY

• Performance analysis with rib modification may provide better results and study.

International Journal of Research in Advent Technology, Vol.7, No.1, January 2019 E-ISSN: 2321-9637

Available online at www.ijrat.org

- Information generated from this review will can be utilized for solar air heater study and modification.
- Different types of Solar Air Heaters are explained by this review, which gives another dimension for further study.

6. OUTCOMES FROM LITERATURE REVIEW

- Most of the Authors have focused on artificial roughness on absorber plate to improve thermal efficiency.
- Effectiveness of rib can be improved in air heating process with curves.
- Performance analysis can be improved by improving free and force convection.
- Authors have focused on various issues of Solar Air Heater but fluctuation of solar energy is to be considered.
- Different types of artificial roughness methods are having different thermal efficiency improvements.

7. CONCLUSION

- Ribs and baffles are the key components to improve thermal efficiency of Solar Air Heater.
- Artificial Roughness will restrict formation of sub-laminar layer and hence convection improves.
- Performance analysis is to be done with different types of ribs like spiral, v-type etc.
- Detailed study on performance analysis of Solar Air Heater is done in this manner.

REFERENCES

- Suman Saurav1, M. M. Sahu2, "Heat transfer and thermal efficiency of solar air heater having artificial roughness: a review", International Journal of Renewable and Sustainable Energy, 2013; 2 (3): 99-109
- [2] Naresh Prajapati*, Ajay Kumar Singh, Ashish Verma, "Comparison Of Performance Of Double Pass Solar Air Heater Having Double Layer Glass", International Journal Of Engineering Sciences & Research Technology, September, 2016
- [3] Mr C Palaniappan, SUN BEST, Theni, Tamil Nadu, India, "Solar Air Heaters: Large Solar Thermal Air Systems for Industrial and Agro Applications", Akshay Urja, June 2017
- [4] 1M. Sivaganesh, 2Dr. R. Rathnasamy & 3Dr. R. Karthikeyan, "Performance Analysis on Improved Solar Air Heater", Imperial Journal of Interdisciplinary Research (IJIR), Vol-3, Issue-5, 2017, ISSN: 2454-1362, http://www.onlinejournal.in

- [5] Foued Chabane1,2,*, Noureddine Moummi1,2, Said Benramache3, Djamel Bensahal1, and Okba Belahssen3, "Collector Efficiency by Single Pass of Solar Air Heaters with and without Using Fins", ENGINEERING JOURNAL Volume 17 Issue, Received 31 December 2012, Accepted 7 April 2013, Published 1 July 2013, Online at http://www.engj.org
- [6] Santosh Vyas1 and Dr. Sunil Punjabi2, "Thermal Performance Testing Of A Flat Plate Solar Air Heater Using Optical Measurement Technique", International Journal of Recent advances in Mechanical Engineering (IJMECH) Vol.3, No.4, November 2014
- [7] Sumit Kumar1 and Vijay Singh Bisht2, "CFD Analysis of Solar Air Heater Roughened with Sshape Ribs with Gap and S-shape Protrusion Roughness", Asian Journal of Applied Science and Technology (AJAST) (Open Access Quarterly International Journal) Volume 2, Issue 3, Pages 135-143, July-September 2018
- [8] P. Velmurugan and P. Ramesh, "Evaluation of thermal performance of wire mesh solar air heater", Indian Journal of Science and Technology Vol. 4 No. 1 (Jan 2011) ISSN: 0974-6846
- [9] Rajendra Karwa and V. Srivastava, "Thermal Performance of Solar Air Heater Having Absorber Plate with V-Down Discrete Rib Roughness for Space-Heating Applications", Hindawi Publishing Corporation, Journal of Renewable Energy, Volume 2013, Article ID 151578, 13 pages, http://dx.doi.org/10.1155/2013/151578
- [10] Abhishek Saxena1 and Varun Goel2, "Solar Air Heaters with Thermal Heat Storages", Hindawi Publishing Corporation, Chinese Journal of Engineering, Volume 2013, Article ID 190279, 11 pages, http://dx.doi.org/10.1155/2013/190279
- [11] B. K.Maheshwari, Rajendra Karwa, and S. K. Gharai, "Performance Study of Solar Air Heater Having Absorber Plate with Half-Perforated Baffles", International Scholarly Research Network, ISRN Renewable Energy, Volume 2011, Article ID 634025, 13 pages, doi:10.5402/2011/634025
- [12] Anamika, Dr. H.C. Thakur, Dr. Gopal Nandan, "A Review on Solar Air Heater Performance Using Different Artificial Roughened Rib", International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 ISSN 2229-5518
- [13] Sanda Budea, "Solar Air Collectors for Space Heating and Ventilation Applications-Performance and Case Studies under Romanian Climatic Conditions", energies, ISSN 1996-1073,

International Journal of Research in Advent Technology, Vol.7, No.1, January 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org

www.mdpi.com/journal/energies, Energies 2014, 3781-3792; doi:10.3390/en7063781

- [14] Amod Kumar a, Rajiv Varshney b, " Experimental study on Heat Transfer Enhancement of a Solar Air Heater with Absorber Plate having Multi V-shaped Rib with Gap and Thermal Storage", International Journal of Advance Engineering and Research Development Volume 4, Issue 6, June -2017
- [15] Madhav Durusoju1, Chetan Goyal2, Imran Sheik3, Akash Dongre4, Lalit Marbate5, Kumar Rohit6 and V.P.Katekar7, "Heat Transfer Enhancement Techniques for Solar Air Heater – A Review", International Journal for Research in Applied Science & Engineering Technology (IJRASET), Volume 4 Issue X, October 2016, IC Value: 13.98 ISSN: 2321-9653
- [16] Sanket Khamitkar 1*, Dr. O. D. Hebbal 2*, "Performance Analysis of Solar Air Heater Using CFD", International Journal of Engineering Research & Technology (IJERT), Vol. 2 Issue 8, August – 2013
- [17] Harish Kumar Patel; 2Saurabh Singh; 3Alfa Tigga ; 4Krishna Kumar Darpan, "Thermal Performance of Solar Air Heater by with artificial roughness-A Review", SSRG International Journal of Mechanical Engineering (SSRG-IJME) – volume 2 Issue 4–April 2015
- [18] Anand Patel1, Divyesh Patel2, Sadanand Namjoshi3, "Thermal Performance Evaluation of Spiral Solar Air Heater", International Journal of Scientific and Research Publications, Volume 5, Issue 9, September 2015 ISSN 2250-3153
- [19] B. K. Maheshwari1, Rajendra Karwa2 and et al, "Performance Study of Solar Air Heater with Baffled Duct", IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), ISSN: 2278-1684 Volume 4, Issue 5 (Nov. - Dec. 2012), PP 52-56, www.iosrjournals.org
- [20] Neelkanth Goel1, Bhavish Gemini2, Sheeraz Raza3, Jigyasa Mehta4, "Sol Aura: Solar Air Heater", NeelkanthGoel et.al.Int. Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 1) May 2016, pp.48-51
- [21] Veena Pal1, Ajeet Kumar Rai2, Vivek Sachan, "Performance Study of A Solar Air Heater", Volume 6, Issue 7, July (2015), pp. 01-07, Article ID: 30120150607001, International Journal of Mechanical Engineering and Technology, © IAEME: http://www.iaeme.com/IJMET.asp